Stereoselective Synthesis of D-Erythrose and D-Threose Derivatives from D-Glyceraldehyde Acetonide and Their Reactions with 1-(Trimethylsilyl)-vinyl Cuprate Reagent. Synthesis of Allitol Hexaacetate

Masato KUSAKABE and Fumie SATO* Department of Chemical Engineering, Tokyo Institute of Technology, Meguro Tokyo 152

A new and efficient route to the synthesis of trialkoxy derivatives of D-erythrose ($\underline{1}$) and D-threose from readily available D-glyceraldehyde acetonide was developed. The addition reaction of $\underline{1}$ with 1-(trimethylsilyl)vinyl cuprate reagent proceeded highly stereoselectively to afford anti addition product, which was then readily converted into allitol hexaacetate.

Recently Dondoni and co-workers reported the synthesis of the trialkoxy derivative of D-erythrose (1) from D-glyceraldehyde acetonide and its reaction with 2-(trimethylsilyl)thiazole which proceeded highly stereoselectively to afford anti-addition product, a useful chiral building block for synthesizing polyhydroxylated compounds (Scheme 1).1)

Scheme 1.

Herein we report another convenient route to $\underline{1}$ and also the preparation of its diastereomer D-threose derivative ($\underline{2}$) starting with D-glyceraldehyde acetonide. We also report the stereoselective preparation of anti addition product from $\underline{1}$ and 1-(trimethylsilyl)vinyl cuprate reagent and its use to the synthesis of allitol hexaacetate.

It has been recently revealed that the addition reaction of D-glyceral-dehyde acetonide with 1-(trimethylsilyl)vinyl cuprate 2) or 1-(trimethylsilyl)vinyl copper 3) compounds proceeds highly stereoselectively to afford the anti addition product $\underline{3}$ or the syn addition product $\underline{4}$, respectively, in excellent yields (Scheme 2). The ready availability of $\underline{3}$ and $\underline{4}$ prompted us to convert them into $\underline{1}$ and $\underline{2}$,respectively. We succeeded in carrying out this transformation by using a simple sequence of conventional reactions; 1) protodesilylation with NaH in HMPA, 4) 2) protection of the hydroxyl group, and 3) ozonolysis. Thus, $\underline{1a}$ and $\underline{1b}$ were obtained from $\underline{3}$ in 79% and 73% overall

yield, respectively, and $\underline{2a}$ and $\underline{2b}$ from $\underline{4}$ in 66% and 77%, respectively (Scheme 3).

With the aldehydes $\underline{1}$ and $\underline{2}$ in hand, we next focused our attention on the addition reaction of these aldehydes with organometallic compounds and found that the reaction of 1-(trimethylsilyl)vinyl cuprate reagent with $\underline{1}$ proceeds highly stereoselectively to afford anti addition product $\underline{5}$ (Eq. 1). Thus, $\underline{5a}$ was obtained exclusively in excellent yield from $\underline{1a}$ and 1-(trimethylsilyl)vinyl cuprate reagent prepared from 1-(trimethylsilyl)vinyl Grignard reagent, $^{\mathrm{t}}$ BuLi, and CuCN. $^{6-8}$) The stereoselectivity is, however, significantly dependent on the bulkiness of the hydroxyl protecting group, and the selectivity was lowered

Fig. 1.

with the reaction of <u>1b</u>. The anti selectivity in the present reaction can be explained by Felkin-Anh model depicted in Fig. 1. Especially in the case of <u>1a</u> this conformation must be quite stable because of the bulkiness of TBS group, resulting in exclusive production of <u>5a</u>. Noteworthy also is the fact that the reaction of <u>2</u> (the diastereomer of <u>1</u>) with 1-(trimethylsilyl)vinyl cuprate reagent proceeds with poor selectivity (Eq. 2), which suggests the stereoselectivity is also affected by the relative stereochemistry of the aldehyde.

Chemistry Letters, 1986

$$\underbrace{2a} \qquad \underbrace{}^{O} \qquad \underbrace{}^{OH} \qquad \underbrace{}^{O} \qquad \underbrace{}^{OH} \qquad \underbrace{}^{OH} \qquad \underbrace{}^{O} \qquad \underbrace{^{O} \qquad \underbrace{}^{O} \qquad \underbrace{}^{O}$$

In our opinion, $\underline{5a}$ thus obtained can serve as a useful precursor for the stereoselective synthesis of sugars which is one of the current topics in organic synthesis. As an example, we converted $\underline{5a}$ into allitol hexaacetate as shown in Scheme 4. Epoxidation of $\underline{5a}$ using TBHP-VO(acac)₂ afforded $\underline{9}$ exclusively in 92% yield. After protection of the hydroxyl group with methoxymethyl group (MOMCl- $^{\mathrm{i}}$ Pr₂EtN), two silyl groups were removed by treatment with $^{\mathrm{n}}$ Bu₄NF to give $\underline{10}^{12}$) (74%). The resulting compound $\underline{10}$ was readily converted into allitol hexaacetate ($\underline{11}$) according to the procedure reported by Masamune and Sharpless. $^{\mathrm{13}}$)

Scheme 4.

References

- 1) A. Dondoni, M. Fogagnolo, A. Medici, and P. Pedrini, Tetrahedron Lett., 26, 5477 (1985).
- 2) M. Kusakabe, and F. Sato, J. Chem. Soc., Chem. Commun., in press.
- 3) F. Sato, Y. Kobayashi, O. Takahashi, T. Chiba, Y. Takeda, and M. Kusakabe,

- J. Chem. Soc., Chem. Commun., 1985, 1636.
- 4) F. Sato, Y. Tanaka, and M. Sato, J. Chem. Soc., Chem. Commun., 1983, 165.
- 5) $\frac{1b}{1}$; 1H NMR data were in accord with values reported by Dondoni. 1; $[\alpha]_D^{25} + 35.3^{\circ}$ (c 1.30, CHCl₃). $\frac{2b}{1}$; 1H NMR (CCl₄) δ 1.26 and 1.33 (2s, 6H), 3.68 (dd, J = 1.4, 4.9 Hz, 1H), 3.76-4.36 (m, 3H), 4.56 and 4.67 (2d, J = 12 Hz, 2H), 6.97-7.40 (m, 5H), 9.59 (d, J = 1.4 Hz, 1H); $[\alpha]_D^{25}$ -25.0° (c 1.21, CHCl₃).
- 6) B. H. Lipshutz, R. S. Wilhelm, J. A. Kozlowski, and D. Parker, J. Org. Chem., <u>49</u>, 3928 (1984).
- 7) Experimental procedure for the preparation of <u>5a</u> is as follows.

 To a suspension of CuCN (242 mg, 2.70 mmol) in THF (6 ml) were added 1(trimethylsilyl)vinyl Grignard reagent (5.29 ml, 0.51 M in THF, 2.70 mmol)
 and then ^tBuLi (1.35 ml, 2.00 M in pentane, 2.70 mmol) at -50 °C. After 5
 min, the solution was cooled down to -78 °C and the solution of <u>1a</u> (495 mg,
 1.80 mmol) in THF (5 ml) was added. The mixture was stirred for 10 min at
 -78 °C and 1 h at room temperature. Usual workup and purification by
 column chromatography gave 5a (555 mg, 82%).
- 8) The compound $\underline{5a}$ showed the following data; 1 H NMR (CCl $_{4}$) δ 0.13 (s, 15H), 0.89 (s, 9H), 1.17 and 1.28 (2s, 6H), 2.42 (brs, 1H), 3.62-4.16 (m, 4H), 4.23-4.41 (m, 1H), 5.40-5.54 (m, 1H), 5.83-6.00 (m, 1H); 13 C NMR (CDCl $_{3}$) δ -4.6, -4.3, -0.8, 18.0, 25.5, 25.8, 26.4, 64.2, 73.0, 74.9, 76.3, 107.0, 125.0, 149.1; IR (nujol) 3500, 1250, 835 cm $^{-1}$; [α] $_{D}$ + 24.1 $^{\circ}$ (c 1.06, CHCl $_{3}$).
- 9) The reaction of $\underline{1}$ and $\underline{2}$ with 1-(trimethylsilyl)vinyl copper reagent prepared from 1-(trimethylsilyl)vinyl Grignard reagent and CuI which we expected to afford syn addition product $\underline{6}^{3}$ resulted in complete recovery of the starting aldehydes. The reaction with 1-trimethylsilyl Grignard reagent resulted in poor stereoselectivity.
- 10) G. J. McGarvey, M. Kimura, T. Oh, and J. M. Williams, J. Carbohydr. Chem., 3, 125 (1984).
- 11) H. Tomioka, T. Suzuki, K. Ohshima, and H. Nozaki, Tetrahedron Lett., <u>23</u>, 3387 (1982). A. S. Narula, ibid., <u>23</u>, 5579 (1982).
- 12) 9; ¹H NMR (CCl₄, D₂O) δ 0.09 (s, 15H), 0.84 (s, 9H), 1.20 and 1.27 (2s, 6H), 2.46 and 2.93 (2d, J = 4.9 Hz, 2H), 3.66-4.13 (m, 5H); ¹³C NMR (CDCl₃) δ -4.5, -3.0, 18.0, 25.4, 25.7, 26.4, 46.5, 51.6, 65.9, 72.4, 72.8, 75.1, 107.7; IR (nujol) 3430, 1245, 835 cm⁻¹; $\left[\alpha\right]_{D}^{25}$ +24.5° (c 1.03, CHCl₃). $\frac{10}{10}$; ¹H NMR (CCl₄, D₂O) δ 1.28 and 1.34 (2s, 6H), 2.51-2.76 (m, 2H), 2.99-3.16 (m, 1H), 3.31 (s, 3H), 3.52 (dd, J = 2.9, 5.3 Hz, 1H), 3.70 (dd, J = 3.0, 6.7 Hz, 1H), 3.83-4.25 (m, 3H), 4.55 and 4.57 (2d, J = 5.4 Hz, 2H); IR (neat) 3440, 1210, 1025 cm⁻¹; $\left[\alpha\right]_{D}^{25}$ +24.7° (c 1.19, CHCl₃). 11; ¹H NMR (CDCl₃) δ 2.03 (s, 6H), 2.055 (s, 6H), 2.06 (s, 6H), 4.15 (dd, J = 5.8, 12.3 Hz, 2H), 4.32 (dd, J = 2.7, 12.3 Hz, 2H), 5.12-5.46 (m, 4H); $\left[\alpha\right]_{D}^{25}$ 0° (c 0.51, EtOH).
- 13) T. Katsuki, A. W. M. Lee, P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, D. Tuddenham, and F. J. Walker, J. Org. Chem., 47, 1373 (1982).

(Received June 19, 1986)